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J .  Phys.: Condens. Matter 1 (1989) 2959-297s. Printed in the UK 

A relativistic spin-polarised multiple-scattering theory, 
with applications to the calculation of the electronic 
structure of condensed matter 

P Strange?$, H EbertlO, J B Staunton7 and B L Gyorffyt 
t Physics Department, Bristol University, Tyndall Avenue. Bristol BS8 lTL, UK 
7 Physics Department, Warwick University, Coventry, West Midlands, UK 

Received 10 August 1988, in final form 28 October 1988 

Abstract. A fully relativistic spin-polarised multiple-scattering theory is described for solving 
the fundamental Kohn--Sham equations of the relativistic spin-density functional theory. 
Particular attention is paid to calculating the Green functions for the Dirac-like equations 
occurring in the theory. Practical ways of evaluating the appropriate formulae are discussed 
and illustrated by explicit calculations of energy bands, density of states, and spin con- 
tribution to the magnetic moment in ferromagnetic iron. The difference between this fully 
relativistic theory and previous treatments of relativistic effects in magnetic materials is 
emphasised. Several physical applications of the method are suggested. 

1. Introduction 

Compared with a non-relativistic description, relativistic quantum mechanics of elec- 
trons in condensed matter has a number of qualitatively new features. One of these is 
the coupling between the spin and orbital degrees of freedom. Evidently its consequences 
are particularly striking in spin-polarised systems of itinerant electrons such as occurs in 
metallic magnets. For instance, it is this coupling that gives rise to the magnetocrystalline 
anisotropy energy (Landau et a1 1984, March et a1 1984, Staunton et al 1988) and is 
responsible for the different response of a spin-polarised system of electrons to left- 
handed and right-handed circularly polarised x-rays (Schutz et aZ1987). In a previous 
paper (Strange et aZ 1984) we took the first steps towards a first principles theory of 
electrons in condensed matter including both relativity and magnetism on an equal 
footing. In that paper we discussed relativistic spin-polarised single-site scattering theory 
only. Independently an equivalent theory was set up by Feder et a1 (1983) and Feder 
(1985). 

In the present paper we briefly discuss relativistic density functional theory, the 
single-site Green function, and derive the multiple-scattering Green function for a 
crystalline array of scattering centres. A similar expression has been derived by Schadler 
et a1 (1987). Furthermore, the calculation of observables from the Green function is 
outlined and then the practical aspects of the corresponding calculation are discussed. 
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We only mention those problems that do not occur in more conventional band theories. 
Finally, the theory is illustrated with a calculation of the energy bands, density of states 
and spin contribution to the magnetic moment of ferromagnetic iron. 

2. Relativistic density functional theory 

It is now well established that the equilibrium properties of many-electron systems can 
be usefully described by density functional theory (Kohn and Vashista 1983). In this 
approach the complicated many-body problem is reduced to a set of effective single- 
particle Schrodinger-like equations for which the effective potential is a functional of 
the charge and magnetisation densities and therefore has to be solved self-consistently. 
In this theory the so-called many-body effects are described by the exchange and 
correlation contribution to the effective potential functional. In practical applications 
these are treated in some local approximation (see Hedin and Lundqvist 1972, for 
example). Recently this theory has been generalised in order to make it applicable to 
systems in which relativity plays a significant role (Rajagopal 1978, MacDonald and 
Vosko 1979, Ramana and Rajagopal 1979). In particular, MacDonald and Vosko devel- 
oped the theory for a many-electron system in the presence of an external potential and 
a 'spin-only' magnetic field (neglecting diamagnetic effects). Evidently a complete 
account of the relativistic effects mentioned in the introduction must be based on this 
framework. In this approximation the appropriate Kohn-Sham-Dirac equations which 
must be solved self-consistently are 

(-ihccy - p  + pmc2 + I - Veff[n(r), m(r)] + p a  ~ " ~ [ n ( r ) ,  m(r)] - E ; ) t , ! ~ ~ ( r )  = O 
(2.1a) 

(2. 1b) 

(2. IC) 

(2. Id) 

Beff[n(r), m(r)] = (eh/2mc){Bext(r) + GE"'[n(r), m(r)]/bm(r)}. (2. le) 

In equations (2.1) +;(r) is a four-component one-electron Dirac spinor, Veff[n(r), m(r)] 
is an effective potential which is the sum of three terms: an external potential Vex'(.) due 
to the atomic nuclei, the relativistic exchange-correlation potential, and the classical 
electrostatic potential. Approximations for the exchange-correlation potential are dis- 
cussed by MacDonald and Vosko (1979). Furthermore cy and p are the standard Dirac 
matrices, U are the 4 x 4 Pauli matrices, EX' is the relativistic exchange-correlation 
energy. Beff[n(r), m(r)] is an effective magnetic field consisting of an exchange-cor- 
relation term and a fictional external magnetic field which couples to the spin of the 
electron only. All other symbols have their usual meanings and we work throughout in 
atomic units. 

The above approximate equations are derived with the analogy with the non-rela- 
tivistic limit in mind. A more general fully relativistic discussion of Veff and Beff  is given 
by MacDonald and Vosko (1979). In the case of a solid, both Veff(r) and Beff(r) are a 
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sum of contributions from each site in the infinite lattice. A way of solving these equations 
was proposed by Feder et a1 (1983). Their approach was based on the layered KKR 
method of Pendry (1974). We follow the alternative approach of Strange et a1 (1984) and 
sum up the multiple scattering series in the conventional way, (Korringa 1947). For the 
sake of clarity, before studying the case of an infinite array of scatterers we summarise 
the single scatterer results of Strange et a1 (1984). 

3. Single-site scattering theory 

The first step towards deploying the multiple-scattering method to solve Dirac-like 
equations for non-overlapping arrays of potential wells is to solve the problem of a single 
well embedded in a constant background potential which we shall take as our energy 
zero. 

Even for non-spherical targets the spin and angular dependence of the wavefunctions 
are most conveniently described by expansions in terms of the spin angular functions: 

x?,(r) = 2 c:;;-uYy/-u(i)xy/2 (3.1) 
U 

where Yy(P) are the usual spherical harmonics, Xyl2 is the spin function for total spin-4 
and magnetic quantum number U ,  the CE:;+ are Clebsch-Gordon coefficients, m, and 
K are the eigenvalues of the angular momentumoperatorj, andK = ( (T L + l), respect- 
ively. 

In terms of such expansions, outside the range of the potential well the following 
scattering solution may be defined 

where the four-component free-particle solutions J T i  and H?i are given in terms of the 
spherical Besselj, and Hankel h l  functions as 

The magnitude of the momentum p is i iven approximately by p = d E  (Rose 1961). 
S, = I K ] / K .  The coefficient matrix of J , i  in equation (3.2) is the inverse of iT~mi'(E), 
which is an element of the single-site scattering t-matrix (Lloyd and Smith 1972). Note 
that equation (3.2) is the appropriate boundary condition for a scattering problem with 
a non-spherical scatterer. It should be interpreted as being the superposition of an 
outgoing scattered wave with amplitude normalised to HTi(p,  r )  plus a sum of con- 
tributions to it from all possible incident waves .Tzl (p, r).  

Inside the region of the potential ZTi is defined as 
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where g?; andfK",: are the solutions of the four coupled partial differential equations 

6 
- [rcf::,(E, r ) ]  = ~'cf;;(E, r )  - [E  - Veff(r)]rg2K(E, r )  
6r 

+ Beff(r) G(K", K ' ,  mj)g:L(E, r )  ( 3 . 6 ~ )  
d' 

s 
- [rg2K(E,  r ) ]  = - K ' g 2 K ( E ,  r )  - { [E  - Veff(r)]/cZ + I}crf$:,(E, r )  6r  

Beff(r) 
-- 2 G(-K"K'm)Crfp;(E, r )  

c2 d' 
(3.6b) 

and two equations coming from interchanging K' and K .  The total angular momentum 
J 2  has eigenvalues j ( j  + 1) and its projection along the z-axis J ,  has eigenvalues m,. 
G(K', K, m) is given in terms of Clebsch-Gordon coefficients by G(K', K,  m) = 
C"," K,mi - CK"i CKmi It is useful to recall that ~mi - !~C+mi- i  &mi+& & m i i t *  

K = l  

K = - 1 - 1  

fo r j  = (1 - 1) 
fo r j  = (1 + +) 

In general the radial equations in equation (3.6) are an infinite set of coupled equations. 
However, the 1 to 1 + 2 coupling can be neglected (Feder et a1 1983, Strange et a1 1984) 
and hence we shall be interested only in the case where K" is restricted to the values 1 and 
-1 - 1. 

As was shown by Strange et al  (1984) the scattering t-matrix, tF;klt i ,  is defined by 
matching the two solutions for ZFi (equations 3.2 and 3.5) at the boundary of the 
potential. The off-diagonal matrix structure of the t-matrix comes from the fact that 
more than one incident wave scatters onto a single outgoing wave of unit amplitude. An 
alternative derivation of this off-diagonal t-matrix has been given by Ebert and Gyorffy 
(1987). 

It is often useful to transform to a representation familiar from non-relativistic 
quantum mechanics, defined by the quantum numbers, 1, m, and s. 'This is related to the 
K m ,  representation by 

in this representation 

The new feature of these t-matricesis that they are off-diagonal in spin space. The various 
interesting properties of this t-matrix were exhaustively investigated by Strange et a1 
(1984). However they did not explicitly study the corresponding Green function. Thus 
we shall do this here. 

Let us begin by considering a single potential well centred on the nth lattice site. 
Instead of the differential equation 

[ihca * p + pmc2 + I Veff(r) + p a  - Beff(r)]G"(r ,  r',  E )  = 16(r - r')  (3.9) 
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we wish to start with the equivalent integral equation for the 4 x 4 bispinor Green 
function Gn(r, r ’ ,  E ) ;  see Faulkner and Stocks (1980). 

G”(r, r ’ ,  E )  = Go(r,  r ’ ,  E )  + Go(r,  r”,  E)t(r”,  r”‘, E)Go(r”’, r ’ ,  E )  dr”’dJ‘ (3.10) J J  
where Gn(r, r’,  E )  
R,,  and r and  r’ ai 
the relativistic 4 x 

is the Green function for an electron scattering from a single site at 
.e in the vicinity of the scattering centre, with ~ r ’ ~ 3 ~ r ~ .  Go(r, r’ ,  E )  is 
4 matrix free-electron Green function given by Rose (1961). 

(3.11) 

with 

G W ,  r’,  E )  = ip(E + 1) z h l W ) j l ( P ~ ’ ) x 3 ( f )  @x$(r’) (3.12a) 
Kmi 

G&(r, r’,  E )  = - p 2  SKh;(pr)jl(pr’)x?L (i) @ x T ; ( f ’ )  (3.12b) 
Kmi 

G:l(r, r ’ ,  E )  = - G$(r,  r ’ ,  E )  (3.12c) 

G:2(r, r’,  E )  = ( E  - l ) / (E + l)G;l(r,  r’ ,  E )  (3.12d) 

I= 1 - S, and @ stands for outer product. Substituting this into (3.10) leads, eventually, 
to the following two equivalent expressions for the Green function: 

G“(r, r ’ ,  E )  = - ip 2 ZFi(p, r)t:;,Hyi ( p ,  r ’ )  (3 .13~)  
K K ’ m l  

where r and r’ are in the vicinity of site n ,  and tz;, ( E )  is an element on the energy shell 
single-site scattering t-matrix. 

tr;, ( E )  = 11 J z ?  ( p ,  r’)t(r’, r”,  E)J$ ( p ,  r”) d 3r’ d3r“ ,  (3.14) 

HI, is a solution of the Dirac equation for r < r m r  and matches onto Hri for r 3 rmr , The 
derivation of these equations is straightforward and is analogous to the non-relativistic 
derivation of Faulkner and Stocks (1980), and therefore we do not reproduce it here. 

4. Multiple scattering 

The Green function for a system of scatterers can be written in the form (Faulkner and 
Stocks, 1980) 

G(r,  r ’ ,  E )  = G”(r, r ’ ,  E )  + Gn(r ,  r”,  E)T,,(r”, r”‘, E)G”(r”’, r ’ ,  E )  d r ”  dr”’. 

(4.1) 

II 
Here T,,,, is the element of the t-matrix for the system without the scatterer at the nth 
site. It can be written in terms of the scattering path operators for the system of all sites 
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with the nth removed, r$  (Gyorffy and Stott 1973) as 

T,, = 2 r$ .  
i f n  j i n  

The four-vector HTl ( p r )  diverges at the origin but is regular at all other points in space. 
Therefore it can be expanded in spherical Bessel functions when r is  close to some other 
site m. Analogously to Faulkner and Stocks (1980), we have 

H7'(p7 r,) = - ' P E  g;%;KmlJ?'(p> 'VI)' (4.3) 
Kml 

This is a straightforward generalisation of the non-relativistic case, with the expansion 
coefficients g;%iKm, given in terms of the usual ones by 

The structure constants are given by the usual expression (see Stocks and Winter 1984, 

we can show, analogously to Faulkner and Stocks, 

G(r ,  r ' ,  E )  = 1c. ZT,(p, r)ZK,,;,,/(E)Z7I+ ( p ,  r')  - x ZT1(p, r ) W ( p ,  r')  
K K ' m l  KWli 

with number of sites Nand  

(4.5a) 

(4.5b) 

(4.6) 

(4 * 7) 

(4. sa) 

(4.8b) 

If we vary the energy E there will be certain places where the determinant 
li[t-' - g(q, E)]Ilpassesthroughzero. Attheseenergies rKt,jKm,(E) andhenceG(r,'r', E )  
diverge. At  these energies there will be amplified scattered waves even with no incident 
electron. They forin the eigenvalue spectrum or electronic band structure of the system. 

Once we have found the Green function we can calculate observables such as the 
density of states 

Tr G(r ,  r ,  E )  d 3 r  (4.9) n 
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and the magnetic moment 

Tr f laG(r ,  r ,  E) d E  
?G 

(4.10) 

where the trace is over spin space. 

the charge density it can be found from 
In this paper we do not perform charge self-consistent calculations but if we require 

Tr G ( r ,  r ,  E )  dE.  (4.11) 

5. Practical aspects of the theory 

In this section we discuss the practical difficulties involved in the calculation of the KKR 
Green function. Good reviews of the technical aspects of electronic structure calculations 
are given by Loucks (1967) and by Stocks et a1 (1979). Topics covered by these authors 
will not be repeated here. 

We divide this section of our paper into three parts. First we discuss the use of 
complex energy techniques. In particular we focus on how this affects the calculation of 
the KKR structure constants, and on what are the advantages of such methods for 
calculating observables from the KKR Green function. Second, we note that complex 
energy methods introduce a second solution of the Dirac equation which is irregular at 
the origin and we discuss how to solve the Dirac equation with a magnetic field term 
under such circumstances. Third, we analyse the z-matrix of equation (4.8). We consider 
its symmetry, the size and degeneracy of z and how to perform the Brillouin zone 
integrals to find z%,* in a relativistic spin-polarised framework. Finally, we briefly discuss 
the optimum method for finding the eigenvalue spectrum from t. 

5.1. Complex energies 

For a regular array of scatterers the z-matrix as given by equation (4.8) is a very highly 
structured function of the energy E .  This is reflected in the rapidly varying features 
of the densities of states. For an example, see § 6 for the density of states of iron. 
Computational efficiency can be improved by working at complex energies (Zeller et ak 
1982). 

There are many methods used for calculating the KKR structure constants of equation 
(4.5). The summations can be done in real space or reciprocal space, or optimally, using 
the Ewald technique (see Davis 1971, for example), a mixture of both. We have found 
that at the complex energies that we use, the Ewald method is always the most efficient 
method. 

We are unaware of any tabulated values of KKR structure constants at complex 
energies so our routines were checked by insisting that structure constants calculated by 
the Ewald technique agreed at several randomly chosen energies and wavevectors with 
those calculated using equation (4.5) at complex energies. Further details of this part of 
the calculation may be found elsewhere (Strange et af 1987). 

For complex energy z = E + iT the Green function G(r, r ' ,  z )  can be written in terms 
of its value on the real axis: 

1 r f a  r 
G(r, r'E + i r )  = - Im G(r, r ' ,  E'). 

?G J --cE dE' (E  - + r* 
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G(r, r’z)  is analytic on the whole complex plane except for the real axis where it has a 
series of poles. All structure on the real axis is broadened when we go out on the complex 
plane by a Lorentzian of half-width r. Zeller et a1 (1982) have shown the density of states 
of nickel as a function of increasing imaginary energy l7. They show that the density of 
states is almost flat well before r - 0.5 Ryd. Thus we require far fewer energy points to 
obtain an accurate value of the energy integrals in (4.10) and (4.11) for example. 

The actual choice of complex path used in the calculations has to be a compromise. 
If r+  then the integrand in (4.10) or (4.11) would be flat and trivial to integrate. 
However, it is also desirable to have as short a path as possible. Koenig et a1 (1973) 
choose a straight line EF & iT which is completed by an infinite half semi-circle which 
can be calculated analytically and is often a vanishingly small contribution. We have 
followed the procedure of Zeller et a1 (1982) and used a rectangular contour from below 
the bottom of the valence band to the Fermi energy E F .  We have found an imaginary 
part of the energy between 0.05 and 0.10 Ryd sufficient for all purposes. 

If the density of states is calculated on the real axis, E F  can be found as the energy at 
which the integrated density of states is equal to the correct number of electrons. At 
complex energies it is not clear at which value of the real energy one should return to 
the real axis. In our case this is done by estimating EF and returning to 1 mRyd above 
the real axis. Then the density of states at several points parallel to the real axis is found 
and the integrated density of states is interpolated back to the real axis using the 
Cauchy-Riemann formula. The integrated density of states is the quantity used for the 
interpolation as it is the smoothest varying quantity in the calculation. 

One price that we have to pay for the vastly increased computational efficiency 
complex energy techniques bring is that the imaginary part of the second term in the 
Green function of equation (4.7) is no longer zero and must be included in the calculation. 

One final point to note in this section is that we often compare the results of electronic 
structure calculations with experimental observations which are limited by instrumental 
or temperature broadening. In such cases it may be that the results at carefully chosen 
values of the complex energy are sufficient and it is not necessary to return to the real 
axis. 

5.2.  Solution of the radial Dirac equation in a magnetic field at complex energies 

In implementing the calculations discussed in previous sections it is necessary to solve 
the Dirac equation with a magnetic field term at complex energies. At complex energies 
there are two independent solutions of the Dirac equation for each set of quantum 
numbers. One of these solutions is irregular at the origin, and is therefore very difficult 
to determine accurately. 

The same problem occurs in the solution of the Schrodinger equation at complex 
energies. To deal with this difficult problem we have found it convenient to use the phase 
method developed by Calogero (1963a). This has proved to be a numerically stable 
method of finding both the regular and irregular solutions of the Schrodinger equation. 
A good discussion of the phase method is given by Pinski (1984). Calogero (1963a, b) 
later generalised this method to be applicable to the usual radial Dirac equation. We 
have further generalised it for application to the problem of spin-polarised targets and 
hence to the four simultaneous radial equations of equation (3.6). 

Let us begin by noting that the solutions of these radial Dirac equations satisfy: 
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qjlmi(?, E ,  r )  = j l k ( f i )  - dr '  [Veff(r')l - u 3 B e f f ( r ' ) ]  lor 
x [ j l*( f i )C3n15(V '%)  - n r i ( ~ r ) C 3 i l i ( ~ r ) ] . I . ~ T ~ ( * , E , r )  

( 5 4  
where x stands for inner product, 8 for outer product and for matrix multiplication. 
The column vectors Jlk, ni and are of the form: 

q y i ( + ,  E ,  r )  = (5.3) 

where the * refers to whether the solution is regular (+) or irregular (-) at the origin. 
Following Calogero we write the wavefunction as 

We can substitute this expression into (5.2) to find a set of four coupled differential 
equations for the coefficient functions C;;K, C;iK, S2, and C"i . The resulting equations 
are unwieldy, but are straightforward to solve using the Adams-Bashforth method, for 
example. C;;, and SF;, are smooth functions in the muffin tin sphere, most of the infinity 
at the origin in the irregular part of the wavefunction has been swallowed up in the 
Neumann functions. 

The regular solution of these equations is found by outward integration initialised 
by a series solution close to the origin. The irregular solution is found by inward 
integration starting at the muffin tin boundary. This is initialised by putting the wavefunc- 
tion at the sphere radius rMT equal to a spherical Bessel function as discussed by Pinski 
(1984). This procedure has been found to be numerically stable under all circumstances 
we have examined, and for the regular part we obtain the logarithmic derivative in at 
least five-figure agreement with other methods (Loucks 1967, for example). 

K 2K 

5.3. The Brillouin zone  integral for the site-diagonal t-matrix 

The t-matrix is set up as shown in equation (4.8), with one atom per unit cell only and 
therefore 
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-1 1 -2 2 -3 

% I  
-+ 1 -1 4 -9 1 9 -3 -4  1 $ - 5  - 3  

2 2  

-; A 
-1 t A 

1 
2 B 

1 t  B 
-- 

For each value of the quantum numbers I and mi, tis a 2 X 2 matrix. It is this 2 x 2 matrix 
that is inverted to find the elements oft-' in contradistinction to the results of Schadler 
et al,  whose method diverges in the non-relativistic limit! One can imagine the more 
general case of a field pointing in a general direction. Then m, would no longer be a good 
quantum number and the t-matrix would then be the full 2(2I+ 1) X 2(2I+ 1) matrix, 
and it is this that we would then have to invert. 

With both spin-orbit coupling and spin-polarisation included in the calculation there 
are, in general, no remaining degeneracies and therefore it is necessary to solve the 
Dirac equation for every electron. This means solving the coupled Dirac equations 12 
times. When lmil = 1 + 1 we have only one element of the t-matrix that is diagonal in K .  
If Imil # 1 + i then there are two solutions diagonal in K ,  one for each value of the J 
quantum number. Therefore the z matrix is an 18 x 18 matrix for 1 = 2. However this 
matrix is rather sparse. Figures 1 and 2 show the structure and symmetry of t in zero 
field in the Km, and the Ims representations, respectively. These figures are identical to 
those shown by Staunton et a1 (1980), as they should be, because they reflect the double 
point group symmetry of the cubiclattice (Onodera and Okazaki 1966). When amagnetic 
field is applied the symmetry is reduced and this is reflected in the symmetry of the t- 
matrix in a finite field. This is shown for the KP representation (figure 3) and the lms 
representation (figure 4). There is a new s-d coupling introduced by the magnetic field, 
and splitting of many of the degeneracies. 

-B 
-2 4 

3 

1 2 -_ 

-3 

-2  
1 

2 t  
3 2 

-5  

-4 
1 

-P  
-3 

3 
- 5 

C 
C 

C 
C 

I 

D M 
D N L 

D M 
D L  N 

L G  P 
N F P 

M E 
M E 

N P  F 
L P G 
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Figure 2. The matrix structure of t(E) in the lms representation for a cubic crystal and zero 
magnetic moment. 

Owing to the point group symmetry it is only necessary to perform the Brillouin zone 
integral in (5 .5 )  in 1/48th of the Brillouin zone in the non-relativistic case. With the 
decrease in symmetry caused by the interplay between spin polarisation and spin-orbit 
coupling this is no longer sufficient. When a field is applied along a particular crystal 
axis, in our case the (0 ,  0, 1) z direction, we are making that direction inequivalent to 
the (1,0,0) and (0 ,  1 , O )  directions. This decrease in symmetry means that it is necessary 
to perform the integration in 3/48ths of the zone with the field along (0 ,  0 , l ) .  The 
segments of the BCC zone used in this case are shown in figure 5 .  The segments marked 
a, b and c were previously equivalent aqd are now inequivalent. Every time the moment 
points along a different direction it is necessary to recalculate the irreducible wedge of 
the zone. We have found that for an arbitrary direction of the field it is necessary to take 
4 of the zone in the integration of equation (5 .5) .  

The actual method of doing this integration that was used throughout this paper is 
the prism method described in detail by Stocks et a1 (1979). The generalisation to more 
than 1/48th of the zone is straightforward. In the following section we display some 
densities of states curves for iron. As these were calculated for display purposes only 
high precision was not required and we have used six directions in each of the 1/48ths 
and approximately 250 k-points per direction. 
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Also shown in the following section are energy bands for iron. These were found 
from (5 .5)  by looking for the changes in the sign of the eigenvalues of the t-matrix. It 
was found to be more efficient to look at eigenvalues than the determinant because then 
the degeneracy of the bands is automatically known. 

-2 
-2 1 -4 T 

I 4  U 
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-2  
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.-$ 
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-3 -d CY 

4 z  

6. Example: The electronic structure of ferromagnetic iron 
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w 0 

Y Z  Q I *  A R 

In order to present as clear a picture as possible of the new effects introduced in a 
relativistic spin-polarised formalism, we have calculated the electronic structure of iron, 
with the magnetic moment pointing in different directions in the unit cell. The potential 
for this calculation was the result of a self-consistent, spin-polarised, non-relativistic 
electronic structure calculation (Moruzzi et a1 1978). In that calculation there are spin 
up and spin down potentials, which are related to the input data for our calculation via 

(6. l b )  

Because iron is a fairly light ion we expect that the self-consistent potential in the non- 
relativistic regime will be close to that for relativistic case. 
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Figure 4. The matrix structure of t(E) in the lms representation for a cubic crystal where 
each site has a magnetic moment directed along (0, 0, 1). 
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Figure 6. The energy band structure of iron along 
(0, 0, 1) with the magnetisation directed along 
( O , O ,  1). 

Figure 7. The energy band structure of iron along 
(1,0,0) with the magnetisation directed along 
( O , O ,  1). 

First, we examine the energy bands of iron along (0 ,  0 , l )  and (1,0,0) in the unit 
cell. In the non-relativistic case or in the relativistic case with no spin polarisation these 
directions would have identical bands, and as expected we essentially reproduce the 
energy bands of Moruzzi et al. However, figures 6 and 7 show the energy bands near EF 
along T-H (001) and T-H (1 ,0,0) ,  respectively, for the moment pointing along (0 ,  0, 1) 
in the unit cell. Figures 8 and 9 show bands along the same directions with the moment 
pointing along (1,1,0) and figures 10 and 11 are the same directions again with the 
magnetic moment along (1 , 1 , 1) in the unit cell. We see from these figures that inclusion 
of relativistic effects lifts degeneracies of bands at k-points of high symmetry and removes 
crossings of some bands which previously belonged to the two independent sets of ‘spin- 
up’ and ‘spin-down’ bands. This labelling of the bands is no longer possible as we are 
mixing spin character in the states, and this varies along the band. At points where 
crossings are avoided one cannot even say that the band is dominated by a particular 
spin direction. Another way of looking at this is to point out that the expectation value 
of o3 is no longer k1. The anisotropy in the bands leads to anisotropies in the Fermi 
surface. This is particularly noticeable in this example as there are bands which cross 
just above EF in the non-relativistic case creating a very small piece of Fermi or hole 
surface. These are affected significantly by the anisotropy. It may be that for some 
directions of the moment the place where the bands cross, may cross the Fermi energy. 
Thus pieces of Fermi surface may be created or destroyed. 

Figure 12 shows the density of states for iron with the magnetic moment pointing 
along the (0 ,  0, 1) direction. This, essentially, is a reproduction of the results of Moruzzi 
et aZ(1978). Comparison with their results shows that our density of states as some peaks 
taller and narrower than theirs. This is due to using only a few directions in the prism 
method for doing the Brillouin zone integration of equation (5.5). We could make our 
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Figure 8. The energy band structure of iron along 
(0, 0, 1) with the magnetisation directed along 

Figure 9. The energy band structure of iron along 
(1,0,0) with the magnetisation directed along 

(1,1,0?.  (1, I,()?. 

results more like theirs by using a larger number of directions. However, for the present 
illustrative purposes the extra effort does not seem to be justified. 

Figure 13 shows the density of states of iron just below the Fermi energy. The full 
line shows the density of states for the moment along (0 ,  0 , l )  and the broken line is for 

Figure 10. The energy band structure of iron along 
(0, 0, 1) with the magnetisation directed along 

Figure 11. The energy band structure of iron along 
(1, 0,O) with the magnetisation directed along 

(1,1,1). (1,1,1). 
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Figure 12. The density of states of iron. 
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Figure 13. The density of states of iron just below 
EF for the magnetic direction pointing along 
( O , O ,  1) (full line), and (1, 1 , O )  (dashed line). 
The density of states for the moment along 
(1, 1, 1) falls on top of the full line on this scale. 
The Fermi energy is the one calculated for the 
moment along (0 ,  0 , l )  and is only calculated to a 
precision of t 1 mRyd. 

the moment along (1, 1,O). The density of states for the moment along (1, 1, 1) falls 
directly on top of the (0, 0, 1) curve on this scale. The Fermi energy on this diagram is 
for the moment along (0, 0,  1) and will clearly change for different moment directions. 

Finally we have calculated the spin contribution to the magnetic moment of iron 
using (4.10). Decomposed by 1 quantum number, these are ( I  = 0; y = -0.010 yB), ( I  = 
1; y = -0.047 pB) and ( I  = 2; y = 2.140), which is in very satisfactory agreement with 
the calculation of Moruzzi et a1 (1978). 

7. Conclusions 

A relativistic spin-polarised multiple-scattering theory has been developed which treats 
spin polarisation and spin-orbit coupling on an equal footing. Computationally con- 
venient expressions for the scattering Green functions have been found. The method 
has been applied to a calculation of the electronic structure of iron. 

From figure 13 we can see that there are differences in densities of states for the 
moment pointing along different directions in the unit cell. This leads us to hope that 
magnetocrystalline anisotropy energies may be given approximately by the difference 
in the single-electron energies. This constitutes a method of calculating the easy axis of 
magnetisation from first principles. 

We have also noted that the single-electron energies show most difference, for 
different directions of the moment, at peaks in N(E) .  Looking at the energy bands we 
see that this tends to be at the centre or boundary of the Brillouin zone. Therefore, it is 
tempting to suggest that for a given band, its contribution to the anisotropy energy will 
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be largest when a2E/ak2 is a maximum, i.e., the magnetocrystalline anisotropy energy 
is inversely proportional to the band mass. 

That the difference in single-electron energies is calculable within this theory means 
we can also hope to interpret other experiments such as the difference in the x-ray 
absorption spectrum of ferromagnetic metals of left or right circularly polarised incident 
photons. Work is in progress on these topics. 
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